538 Chapter 13.  Fourier and Spectral Applications

13.2 Correlation and Autocorrelation Using
the FFT

Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation are nogg
as conceptually distinct as were the data and response functions that entered in
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them 2
both directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.10) the correlation between two<
continuous functiong(¢) andh(t), which is denoted Cofy, h), and is a function
of lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Cofy, h)(t). The correlation will be large at some value dfthe
first function () is a close copy of the second)ut lags itin time by, i.e., if the first
function is shifted to the right of the second. Likewise, the correlation will be large
for some negative value off the first functionleadsthe second, i.e., is shifted to the
left of the second. The relation that holds when the two functions are interchanged i
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Corr(g, h)(t) = Corr(h, g)(—t) (13.2.])

The discrete correlation of two sampled functigns and h, each periodic
with period N, is defined by

N—-1
Corr(g,h); = > gj+rhu (13.2.2
k=0

The discrete correlation theorem says that this discrete correlation of two real
functionsg andh is one member of the discrete Fourier transform pair

Corr(g, h); < GiHi* (13.2.3
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whereG), and Hy, are the discrete Fourier transformsggfandh ;, and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about t
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (callsit) will formally be a complex vector
of length N. However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components, cdre the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag isjnthe first component;
the correlation at lag 1 is iny, the second component; the correlation at ag
is in ry_1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as
large as+K, then you must append a buffer zoneofzeros at the end of both
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input data sets. If you want all possible lags fréfndata points (not a usual thing),

then you will need to pad the data with an equal number of zeros; this is the extreme

case. So here is the program:

SUBROUTINE correl(datal,data2,n,ans)

INTEGER n,NMAX

REAL datail(n),data2(n)

COMPLEX ans(n)

PARAMETER (NMAX=4096) Maximum anticipated FFT size.

USES real ft, twofft
Computes the correlation of two real data sets datal(1:n) and data2(1:n) (includ-
ing any user-supplied zero padding). n MUST be an integer power of two. The answer
is returned as the first n points in ans stored in wrap-around order, i.e., correlations at
increasingly negative lags are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(1) (zero lag) on up to ans(n/2). Note that ans
must be supplied in the calling program with length at least 2*n, since it is also used as
working space. Sign convention of this routine: if datal lags data?2, i.e., is shifted to the
right of it, then ans will show a peak at positive lags.

INTEGER i,no2

COMPLEX fft(NMAX)

call twofft(datal,data2,fft,ans,n) Transform both data vectors at once.
no2=n/2 Normalization for inverse FFT.
do 11 i=1,no2+1
ans(i)=fft(i)*conjg(ans(i))/float(no2) Multiply to find FFT of their corre-
enddo 11 lation.
ans (1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack first and last into one element.
call realft(ans,n,-1) Inverse transform gives correlation.
return
END

As in convly, it would be better to substitute two callstealft for the one
call to twofft, if datal anddata2 have very different magnitudes, to minimize
roundoff error.

The discrete autocorrelation of a sampled functiory; is just the discrete
correlation of the function with itself. Obviously this is always symmetric with
respect to positive and negative lags. Feel free to use the above roudtinel
to obtain autocorrelations, simply calling it with the samrweta vector in both
arguments. If the inefficiency bothers you, routirea1ft can, of course, be used
to transform thedata vector instead.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13-2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely

handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signal(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is
corrupted signat(t). The signak(t) may be less than perfect in either or both of

(eouawy yuoN apisino) 610°abpluqued @AISSISNI08IIP 0} [fewd puas Jo ‘(Ajuo eauswY YUON) £272-2/8-008-T |[ed JO Wwod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

a

two respects. First, the apparatus may not have a perfect “delta-function” response,
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